If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8/3x+(x-20)+x=180
We move all terms to the left:
8/3x+(x-20)+x-(180)=0
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
x+8/3x+(x-20)-180=0
We get rid of parentheses
x+8/3x+x-20-180=0
We multiply all the terms by the denominator
x*3x+x*3x-20*3x-180*3x+8=0
Wy multiply elements
3x^2+3x^2-60x-540x+8=0
We add all the numbers together, and all the variables
6x^2-600x+8=0
a = 6; b = -600; c = +8;
Δ = b2-4ac
Δ = -6002-4·6·8
Δ = 359808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{359808}=\sqrt{64*5622}=\sqrt{64}*\sqrt{5622}=8\sqrt{5622}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-600)-8\sqrt{5622}}{2*6}=\frac{600-8\sqrt{5622}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-600)+8\sqrt{5622}}{2*6}=\frac{600+8\sqrt{5622}}{12} $
| 2(v-3)-3=-3(-9v+5)-9v | | 5/k+1=31 | | 140+12x+2=83x | | -4b-5=38+9 | | 124=3(4)2x−1 | | 4+2(2x-5)=-2(5x-4)+6x | | 12^t−4=17^-3t | | 1/2+3(1/66)=-1/3+8x | | .67x+(x-12)+x=180 | | C=x^2/25+3x+100 | | -2(8u-1)+6u=2(u+9) | | -8a^2+6a=0 | | 2/3x+(x-12)+x=180 | | -3(u+1)=5u-7+2(4u+6) | | 2/1=2x/2 | | -3(-7w+6)-w=2(w-1)-7 | | (153/10)=(17/5)(x+3) | | 5*2^(x+1)=60 | | 5*2(x+1)=60 | | (b-8)(b-8)= | | 2x^2-40x=-172 | | 2w^2+2w-180=0 | | 2(8w-3)=-38 | | 8+-4/x=-2 | | 12=4(x-7)-8x | | c−29=11 | | ∣c−29∣=11 | | 83x+140=12x+2 | | -2/9=v+3 | | F(x)=14x3-17x2-16x+34-46 | | -1/2+w=4/5 | | 3x–4=7x=11 |