8/3x+1/3x=4x

Simple and best practice solution for 8/3x+1/3x=4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8/3x+1/3x=4x equation:



8/3x+1/3x=4x
We move all terms to the left:
8/3x+1/3x-(4x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
-4x+8/3x+1/3x=0
We multiply all the terms by the denominator
-4x*3x+8+1=0
We add all the numbers together, and all the variables
-4x*3x+9=0
Wy multiply elements
-12x^2+9=0
a = -12; b = 0; c = +9;
Δ = b2-4ac
Δ = 02-4·(-12)·9
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*-12}=\frac{0-12\sqrt{3}}{-24} =-\frac{12\sqrt{3}}{-24} =-\frac{\sqrt{3}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*-12}=\frac{0+12\sqrt{3}}{-24} =\frac{12\sqrt{3}}{-24} =\frac{\sqrt{3}}{-2} $

See similar equations:

| x/2/3-11=4x | | 5/6x-10=15 | | x²+19x-90=0 | | 30=5x+9+5x-30-7x | | |x^2-3x-1|=3 | | 2600=(2x-6)*(x+3) | | 5x−3=x+17 | | 6|4+7v|=0 | | x+-0.025x=341.25 | | 6x(x+1)=3(x-6) | | 5(3t−4)−(t2+2)−3t(t−4)=0 | | 2h+8-h=-3 | | -5/2+4/5u=-7/3 | | 18=(r/7)+25 | | 4(x-5)=4x+10 | | −18f−34−14f=11 | | 9x+12=51 | | 46(2x)=2(3x8) | | 6r+3=2r+23 | | ​6/​h​​−1=3 | | 6(a-5)+4=2(a-5) | | -6+14x+13x+3=180 | | 5(x3)x=4(x3)3 | | 30x^2+15=0 | | (-0.08+x)/5=-0.01 | | ​6​/h​​−1=3 | | 52(32x)=x3(x1) | | 1=(f/6)-3 | | a-19=-27 | | (6+y)^2+y^2=16 | | 8/3x+1/3x=4x+20/3+7/3x | | 15x-5=5(x-) |

Equations solver categories