8/6x+12=11/7x-10

Simple and best practice solution for 8/6x+12=11/7x-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8/6x+12=11/7x-10 equation:



8/6x+12=11/7x-10
We move all terms to the left:
8/6x+12-(11/7x-10)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 7x-10)!=0
x∈R
We get rid of parentheses
8/6x-11/7x+10+12=0
We calculate fractions
56x/42x^2+(-66x)/42x^2+10+12=0
We add all the numbers together, and all the variables
56x/42x^2+(-66x)/42x^2+22=0
We multiply all the terms by the denominator
56x+(-66x)+22*42x^2=0
Wy multiply elements
924x^2+56x+(-66x)=0
We get rid of parentheses
924x^2+56x-66x=0
We add all the numbers together, and all the variables
924x^2-10x=0
a = 924; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·924·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*924}=\frac{0}{1848} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*924}=\frac{20}{1848} =5/462 $

See similar equations:

| 4x(6x-54)=0 | | 6t-5=2t | | 4d+9=34-d | | 3z/10+4=7 | | 4x+2x+5/4+2x=x+25 | | 1,5c+10=25 | | 5x+55+45=180 | | (3x+2)*2-6x=1 | | 90-(1/2x+14)=2x-50 | | z/10+6=8 | | (3x+2)*2-6x=14 | | 3x-6+x=2x-2-x | | 2b-7,5=8,5+b | | 8k+20=60 | | -3+a=3,5a-8 | | 5(x+2)x=3x5 | | 10^(2x)=10 | | 7s+20=195 | | 6x+2=10+3x | | 14x-(3x+2)=11-(x-5)+18 | | -7x-13=-4x-31 | | 14x+2-3x+6x=17(x+2)-15 | | (3x6-12=) | | 19-4(3+x)=14+3x | | 2-7/5x=-2/5x-4 | | 2(2x+6)=2(3x-5) | | 3x-1=5+3 | | -2=6/7(p) | | 9x-(2+4x)+(6-2x)=2x+11 | | x+x*3+x+8=53 | | x-2=2(3x-1) | | -6x^2+36x+0.26=0 |

Equations solver categories