If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8/x-1+9/2x+1=7/2x+1
We move all terms to the left:
8/x-1+9/2x+1-(7/2x+1)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 2x+1)!=0We add all the numbers together, and all the variables
x∈R
8/x+9/2x-(7/2x+1)=0
We get rid of parentheses
8/x+9/2x-7/2x-1=0
We calculate fractions
16x/2x^2+(-7x+9)/2x^2-1=0
We multiply all the terms by the denominator
16x+(-7x+9)-1*2x^2=0
Wy multiply elements
-2x^2+16x+(-7x+9)=0
We get rid of parentheses
-2x^2+16x-7x+9=0
We add all the numbers together, and all the variables
-2x^2+9x+9=0
a = -2; b = 9; c = +9;
Δ = b2-4ac
Δ = 92-4·(-2)·9
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{17}}{2*-2}=\frac{-9-3\sqrt{17}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{17}}{2*-2}=\frac{-9+3\sqrt{17}}{-4} $
| 0.2(4d-6)=0.3d+5-3+0.1 | | 7/9(x+3)=14 | | 9-6m=33 | | 3x-7=-3(2-x) | | 4x/3+3=-2 | | (x+15)^2=54 | | -2/3x-5=-2/3x+10 | | 6x-7=13+7x | | 26=x/4+5 | | -23=5x+12 | | 2x-x+4=11 | | 8x^2+4x+73=0 | | 2x-x+4=x | | 2x+x^2=19 | | –1.4=2.1m | | 21=x/9+4 | | -5(r+8)=-98 | | 24+n/4=19 | | y/9+3=-9 | | 4x+3x+3=x | | -5v+6=-11 | | (3/4h)-12=85/8 | | 8x-7-3x=x+8x | | 2(4r+6)=2/3(12r+17) | | 2x+3+2x+2x+2=2x+2x+3x+1 | | X/2x-3=13 | | 3r+7=38r+12 | | 2b+3-1=14 | | 11x-97=6x+33 | | 4=3/4m-8 | | 4+2x=(-14) | | 5x+-18+-4x=-31 |