80(1.5)=-16t2+64t+80.

Simple and best practice solution for 80(1.5)=-16t2+64t+80. equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 80(1.5)=-16t2+64t+80. equation:



80(1.5)=-16t^2+64t+80.
We move all terms to the left:
80(1.5)-(-16t^2+64t+80.)=0
We add all the numbers together, and all the variables
-(-16t^2+64t+80.)+120=0
We get rid of parentheses
16t^2-64t-80.+120=0
We add all the numbers together, and all the variables
16t^2-64t+40=0
a = 16; b = -64; c = +40;
Δ = b2-4ac
Δ = -642-4·16·40
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-16\sqrt{6}}{2*16}=\frac{64-16\sqrt{6}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+16\sqrt{6}}{2*16}=\frac{64+16\sqrt{6}}{32} $

See similar equations:

| 6n+20=50 | | P=12c-30+6c+20 | | 4x+-1x=3x | | 4(x*x+x+3)=36 | | -1/2u+3/5=1/6+3/5 | | -4(m+2.5)=7.5 | | 6(x+10)=6- | | 30x+3=50 | | 3.4y-2.8=14.2 | | 150=12c-30+6c | | -1(1+7x)=36+6(-7-x) | | 3(y0.2)=9.6 | | 1/3(3x+12)=0 | | 1/2x-4=24 | | 24=4=1/2x | | -4(w+8)=26 | | 5+10m=15 | | 1=3(x-2)+5-3x | | 69.1=2,3.14r | | A(n)=3n-7 | | 8x=92=2x-2 | | y=14=-14 | | 20+4x9=73 | | 60-3x=12 | | -2(t5)=32 | | 140r=350 | | -(t5)=32 | | 2c+8=-14 | | a=3.14(10)^2 | | |1-5x|=11 | | 2x^+13x=3 | | y=12+2.4/3 |

Equations solver categories