80/x-80/(x+10)=4/15

Simple and best practice solution for 80/x-80/(x+10)=4/15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 80/x-80/(x+10)=4/15 equation:



80/x-80/(x+10)=4/15
We move all terms to the left:
80/x-80/(x+10)-(4/15)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: (x+10)!=0
We move all terms containing x to the left, all other terms to the right
x!=-10
x∈R
We add all the numbers together, and all the variables
80/x-80/(x+10)-(+4/15)=0
We get rid of parentheses
80/x-80/(x+10)-4/15=0
We calculate fractions
(-4x^2*()/(15x^2+150x)+(1200x+12000)/(15x^2+150x)+(-1200x)/(15x^2+150x)=0
We calculate terms in parentheses: +(-4x^2*()/(15x^2+150x)+(1200x+12000)/(15x^2+150x)+(-1200x)/(15x^2+150x), so:
-4x^2*()/(15x^2+150x)+(1200x+12000)/(15x^2+150x)+(-1200x)/(15x^2+150x
We calculate fractions
(-4x^2*()+(1200x+12000)*(15x^2+150x)/((15x^2+150x)*(15x^2+150x)+((-1200x)*(15x^2+150x))/((15x^2+150x)*(15x^2+150x)
We calculate terms in parentheses: +(-4x^2*()+(1200x+12000)*(15x^2+150x)/((15x^2+150x)*(15x^2+150x)+((-1200x)*(15x^2+150x))/((15x^2+150x)*(15x^2+150x), so:
-4x^2*()+(1200x+12000)*(15x^2+150x)/((15x^2+150x)*(15x^2+150x)+((-1200x)*(15x^2+150x))/((15x^2+150x)*(15x^2+150x
We can not solve this equation

See similar equations:

| 99=-5d+9 | | X2+15x+30=3x-2 | | (2x+10)=24 | | 3x34= | | 2x-6x=-7 | | 9x+20x=-7 | | X3+3x-14=0 | | 7x-6x=-20 | | 380−20x=160 | | 7=6-7k | | -7(7x-1)=6 | | 2=(p+2)/3 | | 5=(x-9)/9 | | 6=(t-6)/5 | | w/5-15=26 | | 6-7k=7 | | (p+2)/3=2 | | 2x-3+6x=8x+15 | | (x-9)/9=5 | | (t-6)/5=6 | | 2x+4+27=90 | | 3x+2=2x5 | | 0=x−(1/4)x^2 | | 0=x−(1/4)x2 | | 6•1=b-8 | | 1x/4+4=3 | | (11-v)/9=3 | | 6-4(y+13)=2(y-1) | | (c-7)/6=4 | | (1/8)w^2-(1/2)w-4=0 | | 12x+90=6x2 | | -6x+12x+90=0 |

Equations solver categories