80000(x)(2)=90000

Simple and best practice solution for 80000(x)(2)=90000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 80000(x)(2)=90000 equation:



80000(x)(2)=90000
We move all terms to the left:
80000(x)(2)-(90000)=0
We add all the numbers together, and all the variables
80000x^2-90000=0
a = 80000; b = 0; c = -90000;
Δ = b2-4ac
Δ = 02-4·80000·(-90000)
Δ = 28800000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28800000000}=\sqrt{14400000000*2}=\sqrt{14400000000}*\sqrt{2}=120000\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120000\sqrt{2}}{2*80000}=\frac{0-120000\sqrt{2}}{160000} =-\frac{120000\sqrt{2}}{160000} =-\frac{3\sqrt{2}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120000\sqrt{2}}{2*80000}=\frac{0+120000\sqrt{2}}{160000} =\frac{120000\sqrt{2}}{160000} =\frac{3\sqrt{2}}{4} $

See similar equations:

| 3h-49=8 | | 3-2x-(6x-9)=2 | | 6x-1+4x=5x-7 | | x+(x×x)+(x×x×x)=119 | | 36=b−22 | | 3x+30=x+54 | | 3h/8-11=213/64 | | 2(x+7)=19x= | | z−2=9 | | 80,000(2)(x)=90,000 | | 7x+3=11x-25 | | 10n^2-3n^2=14n+11n | | 8(b+1)+4=3(2b-8)+b | | 24x^2-61x+18=0 | | -7x+10+9x+17=-2 | | 3x+4x-20=190 | | 2u=3.5 | | x-32=180 | | 14=d+2 | | (x-7)^2=163 | | 8t^2-3t^2=15t+11t | | ∑30n=1(2n−17) | | g−15=2 | | -16+8v=8(2+5v) | | 8x-5=10x-7 | | 8x-4x–11=7x+4 | | 0.53n+5/n=3/n=-3 | | 4(×-3)-20=5(x-5) | | (3x-2)/2-(4x-5)/3=2 | | 23-2x=7(x-7) | | 7+18m=35+11 | | 5=-10s–15 |

Equations solver categories