81=x(2x+x)

Simple and best practice solution for 81=x(2x+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 81=x(2x+x) equation:



81=x(2x+x)
We move all terms to the left:
81-(x(2x+x))=0
We add all the numbers together, and all the variables
-(x(+3x))+81=0
We calculate terms in parentheses: -(x(+3x)), so:
x(+3x)
We multiply parentheses
3x^2
Back to the equation:
-(3x^2)
a = -3; b = 0; c = +81;
Δ = b2-4ac
Δ = 02-4·(-3)·81
Δ = 972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{972}=\sqrt{324*3}=\sqrt{324}*\sqrt{3}=18\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{3}}{2*-3}=\frac{0-18\sqrt{3}}{-6} =-\frac{18\sqrt{3}}{-6} =-\frac{3\sqrt{3}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{3}}{2*-3}=\frac{0+18\sqrt{3}}{-6} =\frac{18\sqrt{3}}{-6} =\frac{3\sqrt{3}}{-1} $

See similar equations:

| b+20/5=5 | | 15/25=25/x | | 17a-15a=4 | | 6=78/w | | d^2=49/64 | | 3d-5=46 | | x²+4x-21=0 | | w/6-5=1 | | 2(x-7)=9x+10-x,x | | (5x+8)/3+(6x-4)/8=7 | | -x/2=7.5 | | -9x-15=-2 | | 450+20s=64s+20s | | r/7+64=72 | | 6x-6+3x=12 | | (3x-7)(2x+6)=0 | | 2x-x+5x=x-65 | | 3(5-2x=10-x | | 8d-6d=7 | | -(x/2)=7.5 | | 5x+8/3+6x-4/8=7 | | 12m-11m=5 | | 32=6(x+6.5) | | 5x+4=119 | | 2(x-2)²-3=0 | | n/3-2=-8 | | 16-4u=5 | | 180=2x-38 | | O.3=d/11 | | 6(v+3)=3v-3 | | b+2.8=4 | | 40+(2x+20)+(3x+10)=180 |

Equations solver categories