If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81m^2-10=6
We move all terms to the left:
81m^2-10-(6)=0
We add all the numbers together, and all the variables
81m^2-16=0
a = 81; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·81·(-16)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72}{2*81}=\frac{-72}{162} =-4/9 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72}{2*81}=\frac{72}{162} =4/9 $
| 3x-5=-5x+3 | | k2-6=43 | | 53=-v+208 | | k−373=612 | | j+128=744 | | 280-x=86 | | c+110=755 | | -u+130=175 | | r2+4=40 | | 4x−2+3x−7=−514x-2+3x-7=-51 | | 6u=792 | | 17h=391 | | x2-4=77 | | 17h=291 | | f/16=9 | | 5x2+8=413 | | 2x+25+3x-5=180° | | y=10(-0)+2 | | 7.93-15.20=0.66x | | t+777=964 | | 29d=290 | | 5x+8=-48 | | 8y=4y=14 | | 180n=360=140n | | g/26=6 | | 2p+13=7 | | Y=7.5x+3.8 | | g26=6 | | 140n-360=140n | | 6h2-10=86 | | 5x2=-15 | | 2x+x-26=0 |