If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81x+9x^2=0
a = 9; b = 81; c = 0;
Δ = b2-4ac
Δ = 812-4·9·0
Δ = 6561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6561}=81$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(81)-81}{2*9}=\frac{-162}{18} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(81)+81}{2*9}=\frac{0}{18} =0 $
| 0=20x-100 | | 6*49^(x)+3*7^(x)+7=0 | | y/8+1.2=-11.6 | | 9x-5(3x+4)=14+2(x-1) | | 19.5+2x+2.5=36.5 | | 1920-x=1344 | | 6.05+.20=(m-1) | | 1.3=-11.2=5x | | 5+2m=3-10 | | 18x=288=2x | | X+x+4=108 | | F=6.05+.20(m-1) | | 24=u/4+12 | | 60=5^x | | (8x-3)+(15x-1)=180 | | u/3+13=35 | | 0.09x+14.4=0.33x-14.4 | | 2x+103=7x+78 | | 2(2c-1-5=2c+9) | | (7x)+5.32=(3x)+11 | | 59.85=0.33x-14.4 | | -2.8(x=4.9)=18.2 | | 8=-x^2+6x | | 5(3c-1-2=13+9 | | 2x-6=6x=2 | | 8b+4b-2=0 | | 0.09x+14.4=32.4 | | 8(-1+m)+3=2(m-51/5 | | 17/4x=1479 | | 2(2c-1-5)=2c+9 | | 11/3x=1353 | | (a-2)^2=-5 |