If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81x^2-1=0
a = 81; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·81·(-1)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18}{2*81}=\frac{-18}{162} =-1/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18}{2*81}=\frac{18}{162} =1/9 $
| 15-2d=4(8d-5) | | 5(2a+6)-3a=7a+25 | | -2f-4=-6f+8 | | 6n-(2n+5)=-3(5n-2)+8 | | 3(2x-)=2(6x-2)+1 | | 47-2h=4h+5 | | (5x-2)=(78) | | -2w-5=-4w-33 | | 6m−5m−1=2 | | 3/x-4=2x/5-7 | | 15-2d=4(8d-5 | | 9p−18=27 | | 1/5(x+2)=1/10(x-6) | | 24x-10=2x+15 | | 4x+10+x=5x+10 | | -(5x+3)=-23 | | 5-x+2/4X-3=x-1 | | x/0.5=0.8 | | 12y-y-8=10 | | (5a+18)+(48+a)+(8a-30)=180 | | x+18.22=59.87 | | 3r+2/5=4 | | -7c=-6c+8 | | 13n+45+6=168 | | x+x+1=115 | | 8s-9+5s=-33 | | y-(4+y)+24=6y+20+4y | | -9|7z-1|-3=-57 | | 8x-71=5x+4 | | a+144=12 | | 2r-9+4r=3(2r+3) | | 3k +21=27 |