If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81x^2=49
We move all terms to the left:
81x^2-(49)=0
a = 81; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·81·(-49)
Δ = 15876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15876}=126$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-126}{2*81}=\frac{-126}{162} =-7/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+126}{2*81}=\frac{126}{162} =7/9 $
| 5x−10x+38=−11x+325x-10x+38=-11x+32 | | 0.25x(100)=10-20 | | 8x-1=613 | | a+2/5=a+5/8 | | 5p^2+60=35p | | 2w=7-21 | | 1n+15=4n | | 3x/2-2(x-2)/7=2x | | 2b+b+2b+1=76 | | 2x-8=(-80) | | -3/2-1/7x=-4/3 | | 1/5x+13=x-170 | | 63=7(d+5 | | 22=-8x+6(x+6) | | 7-5w-2(w+3)=7w+4-2w | | 4x^2+16x16=0 | | (2w+10)(2w+9)=120.75 | | (3x+9)+x/27)+90=180 | | 0=2.56x^2-x^2 | | 40=10f+30 | | (2x+4)(2x+11)=120 | | 1+x^2=2.56x^2 | | 40=10f-30 | | 4m-3m=10-7 | | 9(6)=8(k+6) | | 7m+7=6m-6 | | 4(x-1)=6(8) | | 4t^2+20t+7=0 | | 4(3x-5)-x=-x-16 | | 3y-6/5-12=9 | | 6(8)=4(x-1) | | 5=y÷12.5 |