If it's not what You are looking for type in the equation solver your own equation and let us solve it.
82+z2=113
We move all terms to the left:
82+z2-(113)=0
We add all the numbers together, and all the variables
z^2-31=0
a = 1; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·1·(-31)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{31}}{2*1}=\frac{0-2\sqrt{31}}{2} =-\frac{2\sqrt{31}}{2} =-\sqrt{31} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{31}}{2*1}=\frac{0+2\sqrt{31}}{2} =\frac{2\sqrt{31}}{2} =\sqrt{31} $
| 13+-3n=5(3+2n) | | 8•5x=48 | | 7=2v−3 | | 8•5x=48. | | 36=-3x+11 | | n.n-6=25 | | -16x2+64x+50=0 | | -16x2+64x+80=50 | | 6x+9x+11x=160 | | d4+ 7=11 | | 3x–7=-‐5(x–5) | | 144=-36v | | -99+m=-1 | | -9=u/3 | | 3p=2p=p | | 4x-3+2x+23-x=11+6x+19 | | 1(12)=300p | | -81(4-2y)^4=-16 | | 73=-4(x=2)-3(6x-7) | | j+15=45 | | F(x)=10(1.05)^x | | c-23=32 | | -117=-5(4x-1)-1 | | X²-4.x+4=0 | | 56=-4m | | 4y2–19y+12=0 | | -5(9-7x)=-80 | | 16.3x^2-150x=180 | | 16.5x^2-150x=180 | | -5(5x-9)=-155 | | 2-4.5x=1.1 | | -4=5+m |