832-(3x+8)(x+8)=

Simple and best practice solution for 832-(3x+8)(x+8)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 832-(3x+8)(x+8)= equation:


Simplifying
832 + -1(3x + 8)(x + 8) = 0

Reorder the terms:
832 + -1(8 + 3x)(x + 8) = 0

Reorder the terms:
832 + -1(8 + 3x)(8 + x) = 0

Multiply (8 + 3x) * (8 + x)
832 + -1(8(8 + x) + 3x * (8 + x)) = 0
832 + -1((8 * 8 + x * 8) + 3x * (8 + x)) = 0
832 + -1((64 + 8x) + 3x * (8 + x)) = 0
832 + -1(64 + 8x + (8 * 3x + x * 3x)) = 0
832 + -1(64 + 8x + (24x + 3x2)) = 0

Combine like terms: 8x + 24x = 32x
832 + -1(64 + 32x + 3x2) = 0
832 + (64 * -1 + 32x * -1 + 3x2 * -1) = 0
832 + (-64 + -32x + -3x2) = 0

Combine like terms: 832 + -64 = 768
768 + -32x + -3x2 = 0

Solving
768 + -32x + -3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
-3 the coefficient of the squared term: 

Divide each side by '-3'.
-256 + 10.66666667x + x2 = 0

Move the constant term to the right:

Add '256' to each side of the equation.
-256 + 10.66666667x + 256 + x2 = 0 + 256

Reorder the terms:
-256 + 256 + 10.66666667x + x2 = 0 + 256

Combine like terms: -256 + 256 = 0
0 + 10.66666667x + x2 = 0 + 256
10.66666667x + x2 = 0 + 256

Combine like terms: 0 + 256 = 256
10.66666667x + x2 = 256

The x term is 10.66666667x.  Take half its coefficient (5.333333335).
Square it (28.44444446) and add it to both sides.

Add '28.44444446' to each side of the equation.
10.66666667x + 28.44444446 + x2 = 256 + 28.44444446

Reorder the terms:
28.44444446 + 10.66666667x + x2 = 256 + 28.44444446

Combine like terms: 256 + 28.44444446 = 284.44444446
28.44444446 + 10.66666667x + x2 = 284.44444446

Factor a perfect square on the left side:
(x + 5.333333335)(x + 5.333333335) = 284.44444446

Calculate the square root of the right side: 16.865480855

Break this problem into two subproblems by setting 
(x + 5.333333335) equal to 16.865480855 and -16.865480855.

Subproblem 1

x + 5.333333335 = 16.865480855 Simplifying x + 5.333333335 = 16.865480855 Reorder the terms: 5.333333335 + x = 16.865480855 Solving 5.333333335 + x = 16.865480855 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.333333335' to each side of the equation. 5.333333335 + -5.333333335 + x = 16.865480855 + -5.333333335 Combine like terms: 5.333333335 + -5.333333335 = 0.000000000 0.000000000 + x = 16.865480855 + -5.333333335 x = 16.865480855 + -5.333333335 Combine like terms: 16.865480855 + -5.333333335 = 11.53214752 x = 11.53214752 Simplifying x = 11.53214752

Subproblem 2

x + 5.333333335 = -16.865480855 Simplifying x + 5.333333335 = -16.865480855 Reorder the terms: 5.333333335 + x = -16.865480855 Solving 5.333333335 + x = -16.865480855 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.333333335' to each side of the equation. 5.333333335 + -5.333333335 + x = -16.865480855 + -5.333333335 Combine like terms: 5.333333335 + -5.333333335 = 0.000000000 0.000000000 + x = -16.865480855 + -5.333333335 x = -16.865480855 + -5.333333335 Combine like terms: -16.865480855 + -5.333333335 = -22.19881419 x = -22.19881419 Simplifying x = -22.19881419

Solution

The solution to the problem is based on the solutions from the subproblems. x = {11.53214752, -22.19881419}

See similar equations:

| 38=2t | | logx=0.96 | | (3x-1)(4x+9)=0 | | -5(3x-27)=2(x-28)-15 | | (8y+4x^2*y^4)dx+(8x+5x^3*y^3)dy=0 | | 0.96=logx | | 3x-57=-15 | | -7n+4(-6+3n)=0 | | 6m^4+12m^3=0 | | 832-3x^2= | | 3*06-5y=-15 | | b^2-3b-21=-3 | | (3x+8)(x+8)-(3w*w)=832 | | (3x+8)(x+8)-(3w*w)= | | (2/5)(-5/16) | | 15-5x=-9x+7 | | 12+2x=3(-x+8)-27 | | 4-4x=-x-2 | | 2x+7=x-11 | | 6x=2+20 | | -3-8(-5a-1)=0 | | 3a-0.5=0.3 | | 9-x=-4x | | 832-3w^2= | | 1/2=10/x | | 4d+8=3d+12 | | -9=8w-5w-3 | | 22-x=5x+4 | | X+34=60 | | 12+5=3(6a-9) | | -2m+4=29-7 | | l=9/11/5 |

Equations solver categories