If it's not what You are looking for type in the equation solver your own equation and let us solve it.
84x(x+2)=0
We multiply parentheses
84x^2+168x=0
a = 84; b = 168; c = 0;
Δ = b2-4ac
Δ = 1682-4·84·0
Δ = 28224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28224}=168$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(168)-168}{2*84}=\frac{-336}{168} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(168)+168}{2*84}=\frac{0}{168} =0 $
| 84x(x+2=0 | | -7(-6m-6)-5=-5(m+2) | | 35a-28-1=14-a | | 2x-3=1/12 | | 5+2/7(x+4)+10=2(5-3,5) | | 22y+6=75 | | 6x^2-25x+14x=0 | | 6(x-3)+1=-17 | | 2(x-1)=1=-5 | | 2t-9=5t+4 | | 4×+10=4x+10 | | 3y+4(y-1)=26-2+8 | | 5x-2+2x=6 | | 34x+95=69 | | 8(x-6)+1=-7-6(x+2) | | 3y+4(y-1)=26-2(5+3) | | 21x+462=18x+483 | | 11x+7x=x | | |4u-2|=10 | | 8(1-b)+2(6+4b)=-5b-5b | | X^3-x+1.2=0 | | 0=-16x^2+48x+40 | | (a÷5)+8=9 | | 0=0=-16x^2+48x+40 | | 2x+-7=5x+8 | | 4x+x-6=4x+3 | | 16x2-4900=0 | | 2(z+4,5)=18,5+0,5 | | 5(-3m-7)=14-8m | | (2x+1)(3x+1)=6x(x+1 | | -8(1-5x)=-8(-4x-4) | | 1/16x=41/4 |