If it's not what You are looking for type in the equation solver your own equation and let us solve it.
84x^2+84x=0
a = 84; b = 84; c = 0;
Δ = b2-4ac
Δ = 842-4·84·0
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-84}{2*84}=\frac{-168}{168} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+84}{2*84}=\frac{0}{168} =0 $
| -(2x-16)+7-7x=5 | | 2(x+3)-3x=2x+10 | | -2x+12=3x/3 | | 2(x-3-2x)=-(5x-27) | | |4x+3|=6x-18 | | x/4=9-2x | | (90)+(6x)+(4x)=180 | | 22-75=x | | 20-50=x | | (6x)+(4x)+(x)=180 | | (x+5)2=(x+4)2 | | 2000=x+.55x | | 5(2–4t)+3t=-5t+7 | | 2x+12=12x+15 | | 5-2(x+3)=19 | | 8x-9+3x=12 | | 7r+3r−8=8+2r | | 3/x=x/(5x-18) | | 6x-9+4x=16 | | 8x-24=3x+26 | | -4/3b+5=-7/9 | | 3-4(-2+7)=(4y-7)+7 | | 10x+12=x1 | | 3(c-4)+6=42 | | -5=k/12 | | x^2/600+1/x=0,247 | | 9s/2=54 | | 4x-6+3x=10 | | 3(2x^2-4x+1)=+2(x^2-2x-5) | | 36-8x=-7(x-4) | | -5=p/20 | | g/3-7=-10 |