If it's not what You are looking for type in the equation solver your own equation and let us solve it.
84x^2=5
We move all terms to the left:
84x^2-(5)=0
a = 84; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·84·(-5)
Δ = 1680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1680}=\sqrt{16*105}=\sqrt{16}*\sqrt{105}=4\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{105}}{2*84}=\frac{0-4\sqrt{105}}{168} =-\frac{4\sqrt{105}}{168} =-\frac{\sqrt{105}}{42} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{105}}{2*84}=\frac{0+4\sqrt{105}}{168} =\frac{4\sqrt{105}}{168} =\frac{\sqrt{105}}{42} $
| 3x-12+63=90 | | y*1.1)-((y-30)=0 | | (2x+1)(3x-5)=3 | | (2x+1))3x-5)=3 | | 2+4=10z+16-12 | | 9•(x+1/7)=18 | | 125=-3(6x+6)-1 | | 6x-14x=3x=40 | | 4x+5=-9-3x | | 3x-11+56=90 | | −1/3b=9 | | -1/3c=9 | | 99999m*23-50=50 | | 21.03=4g+3.55 | | 3(5q-4)=2(4q+5) | | 2x-10=4x-2x-10+1 | | x=0+1x | | k/8+8=19 | | 15(2x-3)=105 | | y=(y-30)/1.1 | | 3.7=7.9-0.7x | | y=3.96+2 | | q+6=1 | | y/5-2=9 | | 1-7y=-4.8 | | 36.46=7g+3.91 | | 50=-7t-6 | | (5y+4)+8y=0 | | 16+8.25p=181 | | 4.3=9.7-0.6x | | 75+14w=229 | | 99-v=156 |