If it's not what You are looking for type in the equation solver your own equation and let us solve it.
85=(2x+10)(4x-15)
We move all terms to the left:
85-((2x+10)(4x-15))=0
We multiply parentheses ..
-((+8x^2-30x+40x-150))+85=0
We calculate terms in parentheses: -((+8x^2-30x+40x-150)), so:We get rid of parentheses
(+8x^2-30x+40x-150)
We get rid of parentheses
8x^2-30x+40x-150
We add all the numbers together, and all the variables
8x^2+10x-150
Back to the equation:
-(8x^2+10x-150)
-8x^2-10x+150+85=0
We add all the numbers together, and all the variables
-8x^2-10x+235=0
a = -8; b = -10; c = +235;
Δ = b2-4ac
Δ = -102-4·(-8)·235
Δ = 7620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7620}=\sqrt{4*1905}=\sqrt{4}*\sqrt{1905}=2\sqrt{1905}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{1905}}{2*-8}=\frac{10-2\sqrt{1905}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{1905}}{2*-8}=\frac{10+2\sqrt{1905}}{-16} $
| X^2=16^x | | -25=r/10 | | (x+2)^3=2402 | | 5/2d=3/4 | | 3x-4=8x+5 | | -13=k-7 | | 5x=35,745 | | (3x-8)(2x+4)=(4x+8)(3x-5) | | 15s+8.7-2s=8.7-s | | x*2000^(-0.4)=1.15 | | -3(5x+10)+15=30 | | 12x+20=34 | | 3y-8=y+19 | | 135=t−136 | | 11-c=-11 | | ½x+8=88 | | -6=b-19 | | 8x-25=3x+15 | | 9-14r=-13.1-r | | z^-2-2z^-1-15=0 | | 5/x^2+6/2x^2=16 | | 9=x-19 | | 35=k+5 | | 2x×x-2x-12=0 | | -12=n-17 | | (4+2x)/5=-8/5 | | 5/8k-7.5=7.5 | | 8x-920=7,080 | | 5x+0.6=40.6 | | x3+3x+-7=0 | | 12y+6=6(2y+1)12y+6=6(2y+1) | | 2x-10=8x-58 |