If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8711/x=(395-2x)/2
We move all terms to the left:
8711/x-((395-2x)/2)=0
Domain of the equation: x!=0We add all the numbers together, and all the variables
x∈R
8711/x-((-2x+395)/2)=0
We calculate fractions
()/2x^2+(-((-2x+395)*x)/2x^2=0
We multiply all the terms by the denominator
(-((-2x+395)*x)+()=0
We calculate terms in parentheses: +(-((-2x+395)*x)+(), so:We get rid of parentheses
-((-2x+395)*x)+(
We add all the numbers together, and all the variables
-((-2x+395)*x)
We calculate terms in parentheses: -((-2x+395)*x), so:We get rid of parentheses
(-2x+395)*x
We multiply parentheses
-2x^2+395x
Back to the equation:
-(-2x^2+395x)
2x^2-395x
Back to the equation:
+(2x^2-395x)
2x^2-395x=0
a = 2; b = -395; c = 0;
Δ = b2-4ac
Δ = -3952-4·2·0
Δ = 156025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{156025}=395$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-395)-395}{2*2}=\frac{0}{4} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-395)+395}{2*2}=\frac{790}{4} =197+1/2 $
| 2x+(17422/x)=395 | | |2x+4|=|5x-2| | | 5(2x-1)=3(2x+2) | | 3(2x+2)=2(2x+5) | | 6x-4=3x+76x-3=7-4=3x=3 | | 7n=5=302 | | 3n2=300 | | 3n2=302 | | 3n2+2=302 | | -7+6x=x-2 | | 9x+-20=2(x+8) | | 1002-6n=302 | | 4x/3=5+x | | 8+4x=8x | | 4n-2=302 | | 35(x/100)+37((100-x)/100)=35.5 | | 8=64n | | 6-y=-2,3 | | 27=2^3x-1 | | (x^2-19x+72)^2=0 | | (3^n+1)+((3^n+3)-(3^n+1))=0 | | (x^2)=1250 | | 9x²+1=6x | | (x-3)(x+2)-3x²+12x=0 | | (1/X)+(1/y)=1/10 | | (3x+1)/4=(5x-2)/5 | | 3x+1/4=5x-2/5 | | 0.4x+0.25=(81-x) | | 1/5=x-2/135 | | 8-(x-4)-2x+3(5-x)=0 | | x4+32=3x8 | | 5x/3x-4-5x/3x+4=2 |