If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8=-18+(3/8)(16-30n)
We move all terms to the left:
8-(-18+(3/8)(16-30n))=0
Domain of the equation: 8)(16-30n))!=0We add all the numbers together, and all the variables
n∈R
-(-18+(+3/8)(-30n+16))+8=0
We multiply parentheses ..
-(-18+(-90n^2+3/8*16))+8=0
We multiply all the terms by the denominator
-(-18+(-90n^2+3+8*8*16))=0
We calculate terms in parentheses: -(-18+(-90n^2+3+8*8*16)), so:We get rid of parentheses
-18+(-90n^2+3+8*8*16)
determiningTheFunctionDomain (-90n^2+3+8*8*16)-18
We get rid of parentheses
-90n^2+3-18+8*8*16
We add all the numbers together, and all the variables
-90n^2+1009
Back to the equation:
-(-90n^2+1009)
90n^2-1009=0
a = 90; b = 0; c = -1009;
Δ = b2-4ac
Δ = 02-4·90·(-1009)
Δ = 363240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{363240}=\sqrt{36*10090}=\sqrt{36}*\sqrt{10090}=6\sqrt{10090}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10090}}{2*90}=\frac{0-6\sqrt{10090}}{180} =-\frac{6\sqrt{10090}}{180} =-\frac{\sqrt{10090}}{30} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10090}}{2*90}=\frac{0+6\sqrt{10090}}{180} =\frac{6\sqrt{10090}}{180} =\frac{\sqrt{10090}}{30} $
| 2(x-3)-3(x-2)=x+2-(x+5) | | 0=3-8x-15x^2 | | 9b+3=12b-15 | | 3x-6x-5=10 | | 5(2x+7)=-34+49 | | 2x+0.5x=10 | | 70.448=-26.16f | | 8+n73=-2 | | 3x+5x-2=-2+8x | | (169−10x)+(99−3x)=180 | | -3(2m+1)+7=5 | | 6x+5=32-2x | | 6v-8+2v=16 | | 2-3=p | | 7+8a=47 | | 2x+1/x=10 | | -4(-5m+9)-8m=6-2(1+4m) | | (2x-24)=(x+5)) | | 8(x+2)=2×+16 | | (6x-5)=(x-25) | | 1/2b+7=b+14 | | 2y=4y+36 | | 2m-7=7-9m-m | | 41/5c-55=3.23 | | |x|=12.3 | | 7x-2(3x+16)=-35 | | 9-3x+16=25-3x | | 10x+3x+5-7=180 | | 4+2.2h=-3.8 | | -8v+v=-14 | | (7x+3)+(8x+1)=180 | | (7x+3)(8x+1)=180 |