If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8=-18+(3/8)(16-40n)
We move all terms to the left:
8-(-18+(3/8)(16-40n))=0
Domain of the equation: 8)(16-40n))!=0We add all the numbers together, and all the variables
n∈R
-(-18+(+3/8)(-40n+16))+8=0
We multiply parentheses ..
-(-18+(-120n^2+3/8*16))+8=0
We multiply all the terms by the denominator
-(-18+(-120n^2+3+8*8*16))=0
We calculate terms in parentheses: -(-18+(-120n^2+3+8*8*16)), so:We get rid of parentheses
-18+(-120n^2+3+8*8*16)
determiningTheFunctionDomain (-120n^2+3+8*8*16)-18
We get rid of parentheses
-120n^2+3-18+8*8*16
We add all the numbers together, and all the variables
-120n^2+1009
Back to the equation:
-(-120n^2+1009)
120n^2-1009=0
a = 120; b = 0; c = -1009;
Δ = b2-4ac
Δ = 02-4·120·(-1009)
Δ = 484320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{484320}=\sqrt{16*30270}=\sqrt{16}*\sqrt{30270}=4\sqrt{30270}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{30270}}{2*120}=\frac{0-4\sqrt{30270}}{240} =-\frac{4\sqrt{30270}}{240} =-\frac{\sqrt{30270}}{60} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{30270}}{2*120}=\frac{0+4\sqrt{30270}}{240} =\frac{4\sqrt{30270}}{240} =\frac{\sqrt{30270}}{60} $
| x-4÷7+5=2 | | 7/3x+2-3/2x=5 | | 2(3x-1)=8(x-2) | | 4a+12=-6 | | x+12x2−4x+1=0 | | 5(2x-6)=2 | | Y=84+x | | -3/4x+1=1/8x+3/10 | | 9^2x-1=1 | | x(4x-9)(x+1)=0 | | 10(x-1)=6x-10 | | -0.18(50)+0.6x=0.3(50+x) | | 5y+(2y-7)-12=4 | | 3^2x-4(3^x+1)=-27 | | 4n^2-n+9=0 | | 5(x+3)-1(x+3)=x | | 2(4x-3=4x)4x-78 | | 2(4x-3=4x)-78 | | 5x*x=60 | | 3x-3x(6x+4)=20 | | 0.05t^2+9t=0 | | 15/8=x | | 4^x-2^x=12 | | -2.5y=-45 | | 6(-3v+1=5(-2v-2) | | 2x-1=3(×+2)-× | | 5x+(x+3)=3x | | X(x+2)²(x+2)=72 | | 8x=38=86 | | 21x+6=17×-26 | | 6x-2+8x-13=5x+7-15 | | 3/x^2-3x+4/x=1/x-3 |