8=3/4a+18-a+4

Simple and best practice solution for 8=3/4a+18-a+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8=3/4a+18-a+4 equation:



8=3/4a+18-a+4
We move all terms to the left:
8-(3/4a+18-a+4)=0
Domain of the equation: 4a+18-a+4)!=0
We move all terms containing a to the left, all other terms to the right
4a-a+4)!=-18
a∈R
We add all the numbers together, and all the variables
-(-1a+3/4a+22)+8=0
We get rid of parentheses
1a-3/4a-22+8=0
We multiply all the terms by the denominator
1a*4a-22*4a+8*4a-3=0
Wy multiply elements
4a^2-88a+32a-3=0
We add all the numbers together, and all the variables
4a^2-56a-3=0
a = 4; b = -56; c = -3;
Δ = b2-4ac
Δ = -562-4·4·(-3)
Δ = 3184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3184}=\sqrt{16*199}=\sqrt{16}*\sqrt{199}=4\sqrt{199}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-4\sqrt{199}}{2*4}=\frac{56-4\sqrt{199}}{8} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+4\sqrt{199}}{2*4}=\frac{56+4\sqrt{199}}{8} $

See similar equations:

| m/16=-1/2 | | 29.95+0.16(270)=m | | M+7-5m=23 | | 8000+8000(.20-x=7200 | | 4x+2=81+13x-7 | | 11/12=3-4h | | 7=7-8x+8 | | 3/4x+3-2x=-1/4 | | 4.8+9=2.8g+19 | | 10.95x+12-57=89.22 | | -8b-3b=-22 | | 4.2(s-15.3)+6.96=17.04 | | 5.5g+10=3.5+22 | | 2.9x-17.8=-9.1 | | *3+5a=4a-10 | | (8x+9)(4x-9)=0 | | 5=3/7b | | 4n=3n-1 | | 5.5g+9=3.5+22 | | 13x+20=-16+16x | | 5x-157+7x=47 | | 9x-8=-42 | | -21=6m-8+7m | | -12+11x+2x=11x+10 | | -23-8x+5x=57 | | 3=5m-5-m | | 4a=8.5 | | -125+x-8x=78 | | 4.9x-3.5=25.9 | | -6x-21=-9x+2x | | -5x+3x=8 | | 5.5g+9=3.5+13 |

Equations solver categories