8=3/4c+12-c=4

Simple and best practice solution for 8=3/4c+12-c=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8=3/4c+12-c=4 equation:



8=3/4c+12-c=4
We move all terms to the left:
8-(3/4c+12-c)=0
Domain of the equation: 4c+12-c)!=0
We move all terms containing c to the left, all other terms to the right
4c-c)!=-12
c∈R
We add all the numbers together, and all the variables
-(-1c+3/4c+12)+8=0
We get rid of parentheses
1c-3/4c-12+8=0
We multiply all the terms by the denominator
1c*4c-12*4c+8*4c-3=0
Wy multiply elements
4c^2-48c+32c-3=0
We add all the numbers together, and all the variables
4c^2-16c-3=0
a = 4; b = -16; c = -3;
Δ = b2-4ac
Δ = -162-4·4·(-3)
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{19}}{2*4}=\frac{16-4\sqrt{19}}{8} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{19}}{2*4}=\frac{16+4\sqrt{19}}{8} $

See similar equations:

| 5x+-1(14+-1x)=-30-2x | | 19u-2u-u=18 | | 11.3=0.2m-7 | | 3x-5=4*12 | | 10+8p=8p+5p | | 4y√=10y+300 | | 2.54x=78.25 | | 7x=15=6x=18 | | 4a-5=-8+3a | | -6(-3x+5)=114 | | -3+5-6g=11-3+5+6g=11-3g | | 4y°2=10y+300 | | 13x-48=4x+24 | | 4x+x=20+18 | | 5=a-1+3 | | -2(13x+20)=-6+16(x-10) | | -2(13x+20)=-6+16(x-10 | | -4-5x=-6x+5 | | -x-6=160 | | 4m-3=2m+3 | | -4-5x=-6+5 | | 2/5g+8=20 | | 10,000+n=106,000=149,000 | | (X-6)^6-11(x-6)^3+30=0 | | 6(2-5x)=12 | | 2.1x-3.5+3.9x=14.5 | | n+6/4=6 | | -95+20x=9(1+8x) | | -6-6(2x+4)=18 | | x^2−12x=98 | | 2x-30=x10 | | -4r-r=5 |

Equations solver categories