8=4+(a-5)(a-5)

Simple and best practice solution for 8=4+(a-5)(a-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8=4+(a-5)(a-5) equation:



8=4+(a-5)(a-5)
We move all terms to the left:
8-(4+(a-5)(a-5))=0
We multiply parentheses ..
-(4+(+a^2-5a-5a+25))+8=0
We calculate terms in parentheses: -(4+(+a^2-5a-5a+25)), so:
4+(+a^2-5a-5a+25)
determiningTheFunctionDomain (+a^2-5a-5a+25)+4
We get rid of parentheses
a^2-5a-5a+25+4
We add all the numbers together, and all the variables
a^2-10a+29
Back to the equation:
-(a^2-10a+29)
We get rid of parentheses
-a^2+10a-29+8=0
We add all the numbers together, and all the variables
-1a^2+10a-21=0
a = -1; b = 10; c = -21;
Δ = b2-4ac
Δ = 102-4·(-1)·(-21)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4}{2*-1}=\frac{-14}{-2} =+7 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4}{2*-1}=\frac{-6}{-2} =+3 $

See similar equations:

| .b-9.7=13.3 | | 4(2x+3)-2(3x-3)+12=3(2x+5)+20 | | 84=12(3y-1) | | 3.5x+45.9=4.3-6.9x | | 14/5+2y=6y-1/5 | | 2(3y+5)+4(2y-4)=3(5y-6)+15 | | |5x+3|=|2x-12| | | 2g^2=200 | | 2(1.5)=c | | -3(x-2)=x-10 | | 5x-26+x-2+2x-1=180 | | x-2+2x-1=180 | | 5x-26+2x-1=180 | | 5(x-2)+2x=7(x+4)=38 | | 5x-26+x-2=2x-1 | | (5x+3)=(2x-12) | | 2x-­1=5x+5 | | 2x­1=5x+5, | | (-7x^-2)-(14x^-3)=0 | | -3(-2)=x-10 | | 9/2k+-7/2=-3–4/5k | | -7x^-2-14x^-3=0 | | -3(x-2)=x10 | | f=5/9(100)-32 | | f=9/5(2)+32 | | (20t+5)°=15 | | (20t+5)°=15t° | | 9/2k+-7/2=-3-4/5k | | 9/2k+-7/2=-3—4/5k | | 7^3+57=d^2 | | 7x-14x=-7x | | 94.2=2×3.14×r |

Equations solver categories