If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8b^2-18b+3=0
a = 8; b = -18; c = +3;
Δ = b2-4ac
Δ = -182-4·8·3
Δ = 228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{228}=\sqrt{4*57}=\sqrt{4}*\sqrt{57}=2\sqrt{57}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{57}}{2*8}=\frac{18-2\sqrt{57}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{57}}{2*8}=\frac{18+2\sqrt{57}}{16} $
| (-1+4i)-2i+(3-7i)-6=0 | | 16=(2t^2)+4t | | 6-(9-4i)+(3-5i)=0 | | (-3+7i)+(1+6i)=0 | | 7x+4=10-2 | | (4-8i)-(-2+i)=0 | | 2x+4=3x+6-22 | | (2+5i)+(6-3i)=0 | | 13x+19/3-12x=11/24 | | 9+5x=7+9-2× | | Y=-2x0-4 | | N+68=35n | | 6a2+13a-28=0 | | a(13+6a)=28 | | 22+4x=20 | | m/0.5=3 | | 68=x+1.4x | | 11+4x+x=36 | | 2(x-1)+3=13 | | -13x-43=11-7x | | 0.2x=0.1 | | 9=4a+7 | | 2x^/4+7=39 | | (6*6)+b=(10*10) | | 2n+5=4n+8−n | | 5=4x+25 | | $5=4x+25 | | (8*8)+b=(10*10) | | 5y-3*1-3=1 | | 7p^2−112=0 | | k/4+2*k=10 | | 180=90+(8x-1)+(4x+7) |