8d-(1/3)(6-9d)=42

Simple and best practice solution for 8d-(1/3)(6-9d)=42 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8d-(1/3)(6-9d)=42 equation:



8d-(1/3)(6-9d)=42
We move all terms to the left:
8d-(1/3)(6-9d)-(42)=0
Domain of the equation: 3)(6-9d)!=0
d∈R
We add all the numbers together, and all the variables
8d-(+1/3)(-9d+6)-42=0
We multiply parentheses ..
-(-9d^2+1/3*6)+8d-42=0
We multiply all the terms by the denominator
-(-9d^2+1+8d*3*6)-42*3*6)=0
We add all the numbers together, and all the variables
-(-9d^2+1+8d*3*6)=0
We get rid of parentheses
9d^2-8d*3*6-1=0
Wy multiply elements
9d^2-144d*6-1=0
Wy multiply elements
9d^2-864d-1=0
a = 9; b = -864; c = -1;
Δ = b2-4ac
Δ = -8642-4·9·(-1)
Δ = 746532
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{746532}=\sqrt{36*20737}=\sqrt{36}*\sqrt{20737}=6\sqrt{20737}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-864)-6\sqrt{20737}}{2*9}=\frac{864-6\sqrt{20737}}{18} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-864)+6\sqrt{20737}}{2*9}=\frac{864+6\sqrt{20737}}{18} $

See similar equations:

| 4.1-x=12.4 | | v+915=0 | | 30x-6=32 | | x+(2/3x−15)=180 | | -0.2(1-x)=2(4+0.1 | | 143=-8x-17 | | -1=4x-3x | | √​x+7​​​−1=x | | 8d(-1/3(6-9d)=42 | | (x+4)^3-48=0 | | 4x^2+2x=5x^2-8 | | 50t+125=325t+350 | | 20=5+3h | | 4-3(x-4)=2x | | -x/5+12=14 | | Y=3x+-15 | | F+3(3.14)=7(3.14)f | | 1-(x+7)(x-3)=26 | | 2w^2+3w-63=0 | | x-1/14=4/7 | | j(4)=-(4+4)(4-2) | | 45y^2+16y-16=0 | | 8x+5=29;3 | | 2/5x=3/10 | | -6(2x7.8-10)=-32 | | 5p-8=1+5p+9 | | 32=-4(8n-8)-2n | | 5-(7x+1)=25 | | 1/8x+1/5x+1/8=57/40 | | 4(m+5)=-12 | | 6-x+3=10 | | 11=6x+3+2 |

Equations solver categories