If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8d^2+19d+6=0
a = 8; b = 19; c = +6;
Δ = b2-4ac
Δ = 192-4·8·6
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-13}{2*8}=\frac{-32}{16} =-2 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+13}{2*8}=\frac{-6}{16} =-3/8 $
| 8=-0.25a | | x*4-13x*2+36=0 | | (7x+11)=180 | | 4x+4-2x=2(x+2) | | 3×(2)+3x+6=20 | | -192+12x=148-8x | | 28/42x+18/42=21/42 | | (3w-6)^2=0 | | -160=-20a | | 15=3(2)+c | | 192+12x=148-8x | | 4x(3x+1)=180-23 | | 3/8=m/24 | | -12=x/18 | | x^2+1x-2187=0 | | 4x(3x+1)=180 | | -98=7x | | 23(3x+1)=180 | | 7.25t+4=18.5t+13 | | 20+8i/4i=0 | | 3+b-2=14 | | 1y+1y=2 | | 2x/x+2=15/12.5 | | 4=p/14 | | 3x+1(7x+11)=180 | | (5+9i)-(1+4i)=0 | | (3x+1(7x+11)=180 | | 14=1/2x-2(x+3) | | 1.2x+2.6=-1.0 | | 9x0=9 | | 13k=208 | | (3x+1)(7x+11)=180 |