If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8f^2+6f+1=0
a = 8; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·8·1
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2}{2*8}=\frac{-8}{16} =-1/2 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2}{2*8}=\frac{-4}{16} =-1/4 $
| Y=5x-2-4x-2 | | 2x+25+3x-5+90=180 | | n/1-1=1 | | 3(w-6)=3 | | 6(x-2)=4(x+8) | | m^2+12m+18=7 | | 4(x+4)=2(x+16) | | 9k^2-18k-25=2 | | 12x^2-16x+8=0 | | 7x^2+14x-60=-4 | | 8+4r-6r=-12+r-1-3 | | 3(x-5)+20=50 | | 6x+15=23x+56 | | x/5-11=18 | | v-6=38 | | 1.5q+6=36 | | 2.5(x+2)+5=34 | | 2/3x-5/3=7/3 | | 48=2v+16 | | n^2+4n-39=-9 | | 3x/5=3600 | | 182=95-x | | n^2=4n-39=-9 | | 34b(b+8)=15 | | -46=-5x+2+3x | | n^2-18n-61=2 | | 5d=23-2d+5 | | 5x-4-4=0 | | 4+4(x+3)=64 | | n^2=2n+3 | | v^2-18v+55=-10 | | 3-2(x-4)=23 |