If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8h^2+21h=0
a = 8; b = 21; c = 0;
Δ = b2-4ac
Δ = 212-4·8·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-21}{2*8}=\frac{-42}{16} =-2+5/8 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+21}{2*8}=\frac{0}{16} =0 $
| -11p-4(3-5p)=4(p-5)-17 | | 8(3m-6)=120 | | 10y-4=3y+24 | | ½(6n+8)=34 | | 56=-8+8n | | 2x+168=90 | | 197+650+7.5x=1137.5 | | -96=-3(3x+8) | | 16÷3x=48 | | m/4+8=-2 | | 197+650+7.5x=1370.5 | | (3x+1)+11x-4)+(5x-7)=180 | | 197+650+7.5x=1370 | | 7x+40=132 | | x/x+80=0.2 | | 3x=12;x= | | 3x=12;x | | 1.5^x=12.5 | | x=(2x-2)180 | | 3n^2-41n+14=0 | | 30+40x+-10=180 | | 6(2x-3)+6=24 | | 14+n=2n+8 | | b^2+5+6=0 | | 6x+20=-4+172 | | x+9x=230 | | 1/2(4x+10)=x+5+x | | -3(7-x)=6 | | 150m-125m+33,775=35,350-150m | | 1r=-10 | | z+5.2=11 | | 3x=7x+48 |