If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8h^2-18=0
a = 8; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·8·(-18)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*8}=\frac{-24}{16} =-1+1/2 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*8}=\frac{24}{16} =1+1/2 $
| 25g2=4 | | x=3x+160 | | 2f2=2 | | 4e2-4e=0 | | 2x^2+×-1=0 | | 2d2-8=0 | | c2=9 | | 8x-16=6x+17 | | |8x-16|=|6x+17| | | (x+7)(x+6)+12=(x+5)(x+9 | | 7x+9x-6x=5 | | c^2-5c+7=0 | | 7b^2-3=-136 | | 2x-3/2+x-3/4=x+5/5-1 | | 7x+4=x+46 | | 2x-5/2+x-5/4=x+5/5-1 | | (2x-5/2)+(x-5/4)=(x+5/5)-1 | | 7^3x=5^x+1 | | 6(d-8)=3(14-$ | | 15+(5x/11)=184 | | -2.5=p+7 | | 184=15+5x/11 | | 1/4+4=5/8x-5 | | 6/18=m/11 | | 23=b-1 | | 190=5(x-50)+65 | | 3x^2-65x+348=0 | | 1/7(x)+1/5(x)=24 | | 5x+x-15x=-18 | | 3x^2+26x-7=0 | | 3.8x=2.5x+6.5 | | ∑7i=12i |