If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8i(5-5i)=0
We add all the numbers together, and all the variables
8i(-5i+5)=0
We multiply parentheses
-40i^2+40i=0
a = -40; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·(-40)·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*-40}=\frac{-80}{-80} =1 $$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*-40}=\frac{0}{-80} =0 $
| (x^2+x-18)^2=0 | | 9h-9h+h-h+h=15 | | 2+y=-26 | | -3+k=-10 | | 3(-3+2n)+2=-3n+38 | | -6y+12+2y=28 | | 7+2c=13 | | 4(1-x)=6x-3 | | -4y=96 | | 25x-100=600 | | (2^3)-(4(5-3)^3)=8x | | 8(1-7x)=8x+8 | | 16w-13w+2w-w=16 | | 2c+3-4=-4c-4 | | n÷-3.88=-2000 | | 6z+2=2z+26 | | -12+8n-5n+8n+10n=18 | | .25(-8k+40)=6+10k | | 7x^2+6=18 | | 10n=6(n+1) | | (13^x+4)=15^4x | | -6y+12y=28 | | 6–4h=-5h | | 7/2x+1/2=9+9/2x | | 9–2u=1 | | 6n+7=15+7n | | 14+r=-1 | | 0=-0.31x^2+0.19x | | -7d=3 | | (5/9)k+(2/3)=(4/3) | | 5k-k-3k+k+k=15 | | 1/4(-8k+40)=6+10k |