If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8k^2+23k+14=0
a = 8; b = 23; c = +14;
Δ = b2-4ac
Δ = 232-4·8·14
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-9}{2*8}=\frac{-32}{16} =-2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+9}{2*8}=\frac{-14}{16} =-7/8 $
| 4d–8=-2d | | 33=3/7(y-10) | | 3x–10=5–2x | | 7(x–1)2=49 | | 9m^2-6m-11=10 | | H(x)=|x-2|+4 | | ×+4y=-42 | | x-100=24-2 | | 3(5x-8)=42 | | -11+2x=-7x-2x^2 | | √a+5=14 | | 13+y+9=0 | | x+13+86=0 | | -2(4+3)+2t=12 | | -b/7=23 | | -6j=72 | | 9|m=6/10 | | 3(6s-9)=81 | | (1+2r)/5=7 | | 26-x=13 | | 5^2^z+2=625 | | -11n=-2n^2+21 | | (3q+1)/2=-4 | | 6n-3=4n+11 | | -1+p/3=7 | | s-59=9 | | c+59=81 | | j+21=68 | | (o-1)/3=6 | | v-3=83 | | j-31=10 | | q-17=5 |