If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8p^2+4p-24=0
a = 8; b = 4; c = -24;
Δ = b2-4ac
Δ = 42-4·8·(-24)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-28}{2*8}=\frac{-32}{16} =-2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+28}{2*8}=\frac{24}{16} =1+1/2 $
| +5x-1=-(+1-2x) | | 12x^2-8x-48=0 | | +5x-7x=+8x-1 | | 2n(3n+1)(4n+2)=0 | | a3+7=14 | | 2(x-2)-3(x-3)=5(x-5)+4(x-8) | | (D^4-2D^4+D^2)y=0 | | 2^2x-25^x-1=5002 | | 43.28x^2+455.96x+4428=0 | | 1/3x+18=x | | 7-i=3-5i | | 2^2x-25^x=5002 | | 2^2x-1-25^x-1=5000 | | 7x+3=5x-1+2x | | 6(4+3x)=7(x+1)+1 | | 9x-11=+7 | | 124=0.05x^2 | | 4^x=0.015625 | | 22+x/3=180 | | 180=2x+60+4x | | 40p^2-1210=0 | | 2-3(y=1)=4y=7 | | 3u+30=-4(u+3) | | 5x^2+-11x-6=0 | | 9w+4-3(-4w-1)=3(w-3) | | x^2+5x=295 | | 9w+-3(-4w-1)=3(w-3) | | 4y+4-2(-8y-2)=5(y-2) | | -2/3x+12=4/3x | | 5u-27=9u+1 | | 3.5+1.6x=2.4 | | 4(2d+3)-5(3d-5)=86 |