If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8p^2+96p+256=0
a = 8; b = 96; c = +256;
Δ = b2-4ac
Δ = 962-4·8·256
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-32}{2*8}=\frac{-128}{16} =-8 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+32}{2*8}=\frac{-64}{16} =-4 $
| x^2-32x+240=84 | | r-9/2=3 | | 3.5×-4=5x+ | | -(-5)=-3.5x+7+4.5x | | 8p2−96p+256=0 | | 4x-5(2x+1)=12x+2 | | 8+6x=-4x-82 | | (0.1x-25)+(0.4x-50)=90 | | f-2.3=3/2 | | 8x-18=10x+ | | 4^x=16^100 | | 2m=3m-8 | | 3x-16=12x+2 | | -6x+4=-26-3x | | 3(6)^x=648 | | 148/2x=180 | | -6x-4=-2x+44 | | 15p=-13 | | 11w+5w+4+11w+5w+4=360 | | x+x-4+x-7=40 | | 3(x-10)=4x+15 | | 12x+39=15 | | 1.18x=23 | | -20p+-p+-5p-(-6)=-19 | | –19p−–10p+–18=18 | | 3x20=5x5 | | 0.06(34,000-x)=1,910 | | 6x-4=-10+7x | | −9=−11+x8 | | 1/2(x)=90-x | | s/11=9 | | 3k-2=10 |