If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8q^2+8q+2=0
a = 8; b = 8; c = +2;
Δ = b2-4ac
Δ = 82-4·8·2
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$q=\frac{-b}{2a}=\frac{-8}{16}=-1/2$
| 40-v=257 | | 1/2(20x+20)=10x+10 | | 4d+3(d-4)=-3(d+12) | | 9(x+1)^2=16 | | 2x+3=5(X-14) | | -7x-90=60-12x | | 0.727272(n-10)=64 | | 12(20x12(20x+20)20)=10x+10 | | 14x+7=19x+5 | | -3(-1)-5y=11 | | 9(x+2)-(8x+6)=9 | | 9x2-5=67 | | 3x+9=-8x-6 | | x/3-x-6/11=7 | | 5x-2(2-3x)=3(x-5)-21 | | 7x+11=5x+3 | | 1/4x+11=39 | | -61+10x=4x+59 | | f(1/2)=-2+2 | | 7x-3x-8=2 | | 3x-4x=8x-5 | | 23x=54 | | 2(x+4)=12,x= | | 2.45x+17.15=34.3 | | |x+8|=10. | | 5r2-8r-5=0 | | 4(3x+3)=16x+11-4X+1 | | 4s2+8s+4=0 | | -4x-7=-2x+1 | | 22x=37 | | 0=-0.4x^2+4x+10 | | 12x-206=-6x+64 |