If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8t(2t-1)=0
We multiply parentheses
16t^2-8t=0
a = 16; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·16·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*16}=\frac{0}{32} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*16}=\frac{16}{32} =1/2 $
| 12/18=3y+4/15 | | 5y+3=8y+15 | | –3+4g=7g | | 8-5b=17 | | 12x+30=4x-70 | | 1÷2/4=1÷3/x | | (x+1)^2−3=13 | | x+179.85=250 | | 3x+2–(4x–1–9x)=6x-1 | | x2−8x=1 | | 3p—2=-29 | | y=3(-6y+7) | | 2/3x=13/40 | | 2/3m=13/40 | | -12=2k+4k | | 39.73=x(1-x) | | n/4–2=1 | | (5x-4)^2=16 | | x÷3=15;x= | | 2z+1=4z-13 | | 52=364/t | | 11.5=n/48 | | 18-y=-23 | | -7w-27=-4(w+3) | | 3(1y+-10)=-33 | | 2x-3(4x+1)=6x+29 | | 75.21*x=6.04 | | 6½x=65 | | (5y-7)-(123+29)=180 | | -1/2s=5/8 | | (5y-7)=123+29 | | -3/4+e=-11/12 |