If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8u^2+8u+1=0
a = 8; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·8·1
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{2}}{2*8}=\frac{-8-4\sqrt{2}}{16} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{2}}{2*8}=\frac{-8+4\sqrt{2}}{16} $
| -6/5u=42 | | 2m^2–7m-30=0 | | -6/7=-3u | | 26=3x+6x+8 | | 1/24x^2-54=0 | | -7(3b+4)+(22b-3)=0 | | (502-185)•526=m•526-185•526 | | -3x-6=-39 | | -3*((+x^2-2x+x-2))-6x=0 | | 2x+28+92=180 | | D^4+3d^2-28=0 | | 5z+12=7z+3 | | (11n☻2)+8=30 | | 5y-12=53 | | x^2-30x-148=0 | | 3x+45=69 | | 9-x=4x-5x | | (3x+8)=(12x-4) | | -7(3b+4)+(22b-3)=0+ | | (11n/2)+8=30 | | (k+4)=(3k-6) | | 4|3w+1|–7=-17. | | 5j+3=2j+21 | | (1/2)-(10/49x)=(24/49)-(1/14x | | 7u-33u=24 | | 9=r+13 | | 7(x-2)-6=3x+8 | | 75/100=4/x | | 20m-6=15m-5 | | (n)(n)+7=151 | | 5(2x-6)=61 | | 8b+9=17b+6 |