If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8u^2-10=278
We move all terms to the left:
8u^2-10-(278)=0
We add all the numbers together, and all the variables
8u^2-288=0
a = 8; b = 0; c = -288;
Δ = b2-4ac
Δ = 02-4·8·(-288)
Δ = 9216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9216}=96$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-96}{2*8}=\frac{-96}{16} =-6 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+96}{2*8}=\frac{96}{16} =6 $
| 30+0.32x=24+0.4x | | 35–x=-45-x | | -4x-2x+9=-6x+9 | | 9+4x=-7-4x | | 4+x+1+4+x+1=22 | | 22-8+10=8x | | 500000=0.97(x+500000) | | 165=69-u | | t/6=-9.5 | | m-45=6.9 | | 7a−3=2a+127a−3=2a+12 | | 3/4×w=46.5 | | -3c=3.6 | | 4z=26 | | 7+x=-137+x=-13 | | (10X+6°)+(10x–26°)=180°* | | X+y+55+120=180 | | 15=t-23 | | -4.9t2+8.8t+10= | | (x+49)+(x+75)+(80)=180 | | =-4.9t2+8.8t+10 | | −1=m/2−10 | | X+y+à=500 | | (7x)^2=784 | | 45x=68 | | 98=u | | -1.46-x=1 | | 8=w÷5 | | (30+4x)=180 | | 4x+11–9x–19=-38 | | 28+x+31=90 | | X+2x+x+4=-32 |