If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8v^2-12v-14=0
a = 8; b = -12; c = -14;
Δ = b2-4ac
Δ = -122-4·8·(-14)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{37}}{2*8}=\frac{12-4\sqrt{37}}{16} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{37}}{2*8}=\frac{12+4\sqrt{37}}{16} $
| 5(x+2)/7-2=3x | | 1-(2x+3)-4=11 | | 3m-15=2m | | 20=y/5+13 | | (3y+2)°=(9y+1)° | | 3/5(r+10)=12 | | 10=5j-4 | | x2+10x-144=0 | | 2/5b-10=30 | | 10=-2/5u | | -2(4+5x)=-128 | | 7x+68=2x=103 | | 20-3t=5 | | 5000/x=0,07 | | 4x+24/2=4 | | 2x2-12x-80=0 | | 3n+4=-4n+24 | | 11=-3p-1 | | 6(2l+8)=72l= | | 10(-3x-7)=20 | | 4=-1+5g | | A^2-10a=-25 | | 24+(2x+18=(3x+6) | | 13=-5u+3 | | 6=-k+4 | | 3v2-9v-54=0 | | 2÷3×+5=x | | -29=-9-5q | | 2(x+15)=20 | | |5-x|=9 | | 2(x+25)=30 | | 12y+49=133 |