If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8w^2-16w=0
a = 8; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·8·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*8}=\frac{0}{16} =0 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*8}=\frac{32}{16} =2 $
| y-12=30-6y | | 52x-(x+3)=7-x | | 3x+3=(x+1)*3 | | 4x2-12x+17=0 | | 3+3a=4 | | 6-8x=-90 | | 3+2a=11 | | (8x+5)=(4x+ | | 2x+19=10x+-45 | | 2x+18=10x-45 | | (X+5)(3X-4)-6(x2+2)+4=0 | | 6(3w+10)/4=2 | | 5m+11=23+3m | | 4(x+3)=2(x-9) | | 5x=13=-27-3x | | (c+3)(c-5)=0 | | s=3+3/5 | | 2y-3=7y-38 | | 25+95+x=180 | | 30/24=100/x | | 120+38+x=180 | | 25730=x/100 | | 10+20+x=180 | | 18-7m=30 | | 3x2−20x−7=0 | | 105+30+x=180 | | 39+75+x=180 | | 25+110+x=180 | | 38+120+x=180 | | 2)4x+3)=10x-2 | | 2(2l+9)=34 | | 1x=32+3/2 |