8x(2x-3)=12(3x+7)-7

Simple and best practice solution for 8x(2x-3)=12(3x+7)-7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x(2x-3)=12(3x+7)-7 equation:



8x(2x-3)=12(3x+7)-7
We move all terms to the left:
8x(2x-3)-(12(3x+7)-7)=0
We multiply parentheses
16x^2-24x-(12(3x+7)-7)=0
We calculate terms in parentheses: -(12(3x+7)-7), so:
12(3x+7)-7
We multiply parentheses
36x+84-7
We add all the numbers together, and all the variables
36x+77
Back to the equation:
-(36x+77)
We get rid of parentheses
16x^2-24x-36x-77=0
We add all the numbers together, and all the variables
16x^2-60x-77=0
a = 16; b = -60; c = -77;
Δ = b2-4ac
Δ = -602-4·16·(-77)
Δ = 8528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8528}=\sqrt{16*533}=\sqrt{16}*\sqrt{533}=4\sqrt{533}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-4\sqrt{533}}{2*16}=\frac{60-4\sqrt{533}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+4\sqrt{533}}{2*16}=\frac{60+4\sqrt{533}}{32} $

See similar equations:

| h(3h)=1 | | 4/8=x-4/20 | | 3h+10-h=6 | | -6(x+5)+8X=-10-2x | | 2(x+3)=x‐4 | | 2(x+3)=(x‐4) | | 5+x/6=16 | | -26-2x=13-15 | | 1.5x=400 | | 40=-4(x+2) | | 4=-3y+22 | | √4y+8=14 | | √x=14 | | 114-3x=194-12x | | 114+-3x=194+-12x | | 5000/x=280 | | 10c-10=30 | | 3X+12=3(3x+4) | | 4.6(2.4r-9.9)=64.1 | | 0.15*n=12 | | −21=0.07z= | | 7(x+4)-23x=7(-2+5)-3x | | 5x+4x+7.5=19x-10 | | -5(2m-6)=-4(3m-5) | | 30w=180+240 | | -10y+18=-3(5y-y)+5y | | 10c=130 | | -7.6p=22.8 | | -4x=x2+4x-1 | | -15=-(6x+1)=5(2+6x) | | 375=20g×75 | | 41+2(k+3)=17 |

Equations solver categories