If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x(3x+20)=15
We move all terms to the left:
8x(3x+20)-(15)=0
We multiply parentheses
24x^2+160x-15=0
a = 24; b = 160; c = -15;
Δ = b2-4ac
Δ = 1602-4·24·(-15)
Δ = 27040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27040}=\sqrt{2704*10}=\sqrt{2704}*\sqrt{10}=52\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-52\sqrt{10}}{2*24}=\frac{-160-52\sqrt{10}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+52\sqrt{10}}{2*24}=\frac{-160+52\sqrt{10}}{48} $
| 5(k+9=0 | | 18-8p=-4p | | 1.7=g/2-1 | | y=3,-2+2 | | 10m+6×0=12 | | 9b-36+b+27=9b | | 3(2z-10)=3 | | y=3,-2 | | 2(22x+1)=26 | | 10m+6-1=12 | | 3+8x+5x=7x+7x | | y-7/4=12 | | 22−3b=7 | | 3a+4a=6a-47 | | 10m+6-2=12 | | 5–4t=12 | | 375.50=55x-128 | | 16f-24=16f+24 | | -2f=8 | | s+20+7s-40=s+50 | | 375.50=55x+128 | | 1/4y=1/28 | | 3x+43−5x=6 | | 6n-16=10n+4 | | (18y+5)+(y+10)=180 | | v+39+8v+3=14v-13 | | 4(x+3)+2(x+6)=36 | | 4x-6x+4=20 | | 4(4f-6)=8(2f+3) | | 7x+7x=8+5x+8x | | 6x-8+4x-12=60 | | -3x+12-2x-7=x+29 |