If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x(3x+4)=26
We move all terms to the left:
8x(3x+4)-(26)=0
We multiply parentheses
24x^2+32x-26=0
a = 24; b = 32; c = -26;
Δ = b2-4ac
Δ = 322-4·24·(-26)
Δ = 3520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3520}=\sqrt{64*55}=\sqrt{64}*\sqrt{55}=8\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-8\sqrt{55}}{2*24}=\frac{-32-8\sqrt{55}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+8\sqrt{55}}{2*24}=\frac{-32+8\sqrt{55}}{48} $
| 4x+49+6x+31=90 | | (-9/4x-19)=7/2x+27 | | 1n-10=8n+4 | | 2n-9=25 | | 7+16y/7-15y-14=43 | | 4n-6=-1n+14 | | x^2+(5/2x)-3=-7 | | 46=4y+5y-9-8y= | | x^2+(5/2)x-3=-7 | | 8(x+4)+2(x-3)=6(x+1) | | 2(4x-9)=8x-18 | | 5-(4r+1)-r=4(2r-3)+15 | | (8+3i)^2=55 | | 3k-7=-1/2 | | 2.5(t=3)=16.25 | | 9x^2=18x-40 | | 2(5c+2)(-2c)=3(2c+3)+7 | | 4n-6=-9+14 | | (2x^2)-x+4=0 | | 45=5.5(12x)+34 | | 9x^2=180 | | |6x+2|=|x+3| | | 9x2−180=0 | | x+37=x+93*2 | | x+37=x+93 | | 8x-25=81 | | 8x+25=81 | | -7+5x=1+3x | | 4x+7-3x-8=7x-6x-4 | | 1/5^x-2=125^x/2 | | -5x-5=-6x+4 | | t^2-8t=33 |