8x(4-2x)=4x(3-5x)+4x

Simple and best practice solution for 8x(4-2x)=4x(3-5x)+4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x(4-2x)=4x(3-5x)+4x equation:



8x(4-2x)=4x(3-5x)+4x
We move all terms to the left:
8x(4-2x)-(4x(3-5x)+4x)=0
We add all the numbers together, and all the variables
8x(-2x+4)-(4x(-5x+3)+4x)=0
We multiply parentheses
-16x^2+32x-(4x(-5x+3)+4x)=0
We calculate terms in parentheses: -(4x(-5x+3)+4x), so:
4x(-5x+3)+4x
We add all the numbers together, and all the variables
4x+4x(-5x+3)
We multiply parentheses
-20x^2+4x+12x
We add all the numbers together, and all the variables
-20x^2+16x
Back to the equation:
-(-20x^2+16x)
We get rid of parentheses
-16x^2+20x^2-16x+32x=0
We add all the numbers together, and all the variables
4x^2+16x=0
a = 4; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·4·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*4}=\frac{-32}{8} =-4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*4}=\frac{0}{8} =0 $

See similar equations:

| -5-4s=-3s | | 2/3=v/42 | | x-2/3x+4=1 | | n+–38=36 | | 42/3w=23/5 | | 10a-10=60 | | p+6=-8 | | 2x-5=1/2(17) | | 10+4n=-1-4n-5 | | 1/2n+20=22 | | p+6=–8 | | 5x+7=3x-29* | | x+5/3=x+5 | | 5t-3(2-3)=33 | | 18/x=3/8 | | 3u-16=35 | | +3a+8=14 | | y.4=42 | | 2x+66=24 | | 9+t/12=(-3) | | 2(x4+8)=18 | | 4x-8/3=0 | | 75=3-6f-5 | | -18=3s | | u/5+7=27 | | 3a-10=10a-4 | | 6a+6=(-18) | | -13=c+3 | | X+7/3-(2-x)=x-5/6 | | 1,8p=19.8 | | 14=2w-8 | | 5+5.9p=53.1 |

Equations solver categories