8x(6x-5)=1

Simple and best practice solution for 8x(6x-5)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x(6x-5)=1 equation:


Simplifying
8x(6x + -5) = 1

Reorder the terms:
8x(-5 + 6x) = 1
(-5 * 8x + 6x * 8x) = 1
(-40x + 48x2) = 1

Solving
-40x + 48x2 = 1

Solving for variable 'x'.

Reorder the terms:
-1 + -40x + 48x2 = 1 + -1

Combine like terms: 1 + -1 = 0
-1 + -40x + 48x2 = 0

Begin completing the square.  Divide all terms by
48 the coefficient of the squared term: 

Divide each side by '48'.
-0.02083333333 + -0.8333333333x + x2 = 0

Move the constant term to the right:

Add '0.02083333333' to each side of the equation.
-0.02083333333 + -0.8333333333x + 0.02083333333 + x2 = 0 + 0.02083333333

Reorder the terms:
-0.02083333333 + 0.02083333333 + -0.8333333333x + x2 = 0 + 0.02083333333

Combine like terms: -0.02083333333 + 0.02083333333 = 0.00000000000
0.00000000000 + -0.8333333333x + x2 = 0 + 0.02083333333
-0.8333333333x + x2 = 0 + 0.02083333333

Combine like terms: 0 + 0.02083333333 = 0.02083333333
-0.8333333333x + x2 = 0.02083333333

The x term is -0.8333333333x.  Take half its coefficient (-0.4166666667).
Square it (0.1736111111) and add it to both sides.

Add '0.1736111111' to each side of the equation.
-0.8333333333x + 0.1736111111 + x2 = 0.02083333333 + 0.1736111111

Reorder the terms:
0.1736111111 + -0.8333333333x + x2 = 0.02083333333 + 0.1736111111

Combine like terms: 0.02083333333 + 0.1736111111 = 0.19444444443
0.1736111111 + -0.8333333333x + x2 = 0.19444444443

Factor a perfect square on the left side:
(x + -0.4166666667)(x + -0.4166666667) = 0.19444444443

Calculate the square root of the right side: 0.440958552

Break this problem into two subproblems by setting 
(x + -0.4166666667) equal to 0.440958552 and -0.440958552.

Subproblem 1

x + -0.4166666667 = 0.440958552 Simplifying x + -0.4166666667 = 0.440958552 Reorder the terms: -0.4166666667 + x = 0.440958552 Solving -0.4166666667 + x = 0.440958552 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.4166666667' to each side of the equation. -0.4166666667 + 0.4166666667 + x = 0.440958552 + 0.4166666667 Combine like terms: -0.4166666667 + 0.4166666667 = 0.0000000000 0.0000000000 + x = 0.440958552 + 0.4166666667 x = 0.440958552 + 0.4166666667 Combine like terms: 0.440958552 + 0.4166666667 = 0.8576252187 x = 0.8576252187 Simplifying x = 0.8576252187

Subproblem 2

x + -0.4166666667 = -0.440958552 Simplifying x + -0.4166666667 = -0.440958552 Reorder the terms: -0.4166666667 + x = -0.440958552 Solving -0.4166666667 + x = -0.440958552 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.4166666667' to each side of the equation. -0.4166666667 + 0.4166666667 + x = -0.440958552 + 0.4166666667 Combine like terms: -0.4166666667 + 0.4166666667 = 0.0000000000 0.0000000000 + x = -0.440958552 + 0.4166666667 x = -0.440958552 + 0.4166666667 Combine like terms: -0.440958552 + 0.4166666667 = -0.0242918853 x = -0.0242918853 Simplifying x = -0.0242918853

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.8576252187, -0.0242918853}

See similar equations:

| x*x*x*x=84 | | x=-x^2+4x-1 | | (D^2+1)y=sinx | | -6(2n-2)+12=4(2n-9) | | 30/(14-4)*3^2-12 | | 24=18x+12 | | 9sin^2x+6cosx-8=0 | | (D^2+D+1)y=sinx | | 25x-9=11 | | X^2+x=14+42 | | 5(x-3)+6=5x-11 | | 3/4((x-16)=2(x-3)=4 | | x=-x^3+4x-1 | | 0=20+6t-t^2 | | 91=5v+11 | | 12x+3x=0 | | 1/4r=4 | | ((1/3)((2/5)x-(1/5)))/(1/15) | | 1/4r | | -20=6t-4.9t^2 | | 5v-12=68 | | 40=3p/5 | | 0.7x=252 | | 17=x/4-53 | | 0.8x+x=192 | | 5w+10=85 | | 3x-(3)=-2 | | 14*x=196 | | 7r-15=12r+8 | | 3(-2)-y=-2 | | x^4-x^2+6*x-20=0 | | 3x-(-1)=-2 |

Equations solver categories