If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x(7-3x)+1=4(2-x)(2+x)
We move all terms to the left:
8x(7-3x)+1-(4(2-x)(2+x))=0
We add all the numbers together, and all the variables
8x(-3x+7)-(4(-1x+2)(x+2))+1=0
We multiply parentheses
-24x^2+56x-(4(-1x+2)(x+2))+1=0
We multiply parentheses ..
-24x^2-(4(-1x^2-2x+2x+4))+56x+1=0
We calculate terms in parentheses: -(4(-1x^2-2x+2x+4)), so:We get rid of parentheses
4(-1x^2-2x+2x+4)
We multiply parentheses
-4x^2-8x+8x+16
We add all the numbers together, and all the variables
-4x^2+16
Back to the equation:
-(-4x^2+16)
-24x^2+4x^2+56x-16+1=0
We add all the numbers together, and all the variables
-20x^2+56x-15=0
a = -20; b = 56; c = -15;
Δ = b2-4ac
Δ = 562-4·(-20)·(-15)
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-44}{2*-20}=\frac{-100}{-40} =2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+44}{2*-20}=\frac{-12}{-40} =3/10 $
| x3+x2-20=340 | | 14+y=3 | | 0.4y−8=9−0.6y | | 8(7-3x)+1=4(2-x)(2+x) | | |k|+2=10 | | |4x-1|=2x+9 | | x2+√2x-4=0 | | (7^x-2√10)(7^+2√10)=9 | | -0.6(3x-4)+3x=0.833 | | (5x+2)/3=8 | | 6=|s|−6 | | 23n+8=12 | | -1,5x2+3,5x=-3 | | 61=-2-7x | | -1/2x-8=2 | | |r|+6=10 | | 1,5x2+3,5x=-3 | | (7-4i)-(10-3i)=0 | | 2x-16+4x=4+180 | | |–b|=0 | | 6x2=x+1 | | 3n~14=22 | | 9x^2-22x+3=0 | | 5x2=2-9x | | 5x-3=2x2 | | 5x-3=-2x2 | | -x+6=5x+3 | | x+0.01x=53,76 | | 1/3*(x)=14 | | 2n=-4n-6 | | 4x−7=10x+11 | | -x2+4x+21=0 |