8x(8x+6x)=7(16)

Simple and best practice solution for 8x(8x+6x)=7(16) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x(8x+6x)=7(16) equation:



8x(8x+6x)=7(16)
We move all terms to the left:
8x(8x+6x)-(7(16))=0
determiningTheFunctionDomain 8x(8x+6x)-716=0
We add all the numbers together, and all the variables
8x(+14x)-716=0
We multiply parentheses
112x^2-716=0
a = 112; b = 0; c = -716;
Δ = b2-4ac
Δ = 02-4·112·(-716)
Δ = 320768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320768}=\sqrt{256*1253}=\sqrt{256}*\sqrt{1253}=16\sqrt{1253}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{1253}}{2*112}=\frac{0-16\sqrt{1253}}{224} =-\frac{16\sqrt{1253}}{224} =-\frac{\sqrt{1253}}{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{1253}}{2*112}=\frac{0+16\sqrt{1253}}{224} =\frac{16\sqrt{1253}}{224} =\frac{\sqrt{1253}}{14} $

See similar equations:

| 8x(8x+6x)=7(16 | | 310000-3x=x | | 4x-9=4x+2 | | 0=0.007x^2+0.003x-9 | | 7=9n-4n | | 1/48x=1/6 | | -9=15=v/3 | | 21/2y=75 | | 5(2y-1)=39 | | Y+1=2x-8 | | -7(u-3)=-3u+37 | | a+7=19+2a | | 9c-9=-11-5(c+6) | | -4y+48=-7(y-6) | | 11/3=8/x | | 83.5=3.5x-60 | | 180-(x+10)=2x+2x | | 18x=18x-11 | | (2x-14)+(-6+8×)=180 | | -2(c-11)+6=-8c-2 | | 5(2y-1)+y=39 | | 4x+30-2x+54=90 | | 5/8=n/11 | | 65=35^z | | 8(4u-1)-12u=11(2u-6 | | 5=7-h | | (x+4)/4=3/2 | | 2x-6÷12=0 | | 4+x=7-6 | | 4(s-2)-3=s+1 | | -4(x-7)=-7x+19 | | 1/10=x/7 |

Equations solver categories