8x(8x+9x)=7(7+9)

Simple and best practice solution for 8x(8x+9x)=7(7+9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x(8x+9x)=7(7+9) equation:



8x(8x+9x)=7(7+9)
We move all terms to the left:
8x(8x+9x)-(7(7+9))=0
We add all the numbers together, and all the variables
8x(+17x)-(716)=0
We add all the numbers together, and all the variables
8x(+17x)-716=0
We multiply parentheses
136x^2-716=0
a = 136; b = 0; c = -716;
Δ = b2-4ac
Δ = 02-4·136·(-716)
Δ = 389504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{389504}=\sqrt{64*6086}=\sqrt{64}*\sqrt{6086}=8\sqrt{6086}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6086}}{2*136}=\frac{0-8\sqrt{6086}}{272} =-\frac{8\sqrt{6086}}{272} =-\frac{\sqrt{6086}}{34} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6086}}{2*136}=\frac{0+8\sqrt{6086}}{272} =\frac{8\sqrt{6086}}{272} =\frac{\sqrt{6086}}{34} $

See similar equations:

| h+20=354h | | 2k2=-13-3k | | 7x+6x=130 | | 8(8+4x+2)=9(9+4x) | | (2.8+x)/3.1=2.709 | | 8(8+4x+2)=3(3+180 | | 5(5+x-6)=4(4+x-3) | | 9x-8-5x-8=44 | | 8y=5y+24 | | 15+x/2=29 | | 25x*2=16 | | 20(20+x)=961 | | 10-3x-x58x=12 | | 17x-7=47 | | 2h−3=3 | | 400+20x=961 | | 7z=84 | | 2x2-29x-126=0 | | n=9n+24 | | a=500000(1+0.875)5 | | n+4n-5n+n+2n=15 | | 167=-w+22 | | 3/7+t=20/21 | | 252-u=19 | | 50=-v+165 | | -6x+11=7-0x | | (T+8)x(-2)=12 | | 3b+2b+b+b=14 | | -5(-2x-6)=4(x+11) | | 13q-6q=7 | | 12r-11r=6 | | 12y-11y=16 |

Equations solver categories