8x(x+2)+20=5x(x+12)

Simple and best practice solution for 8x(x+2)+20=5x(x+12) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x(x+2)+20=5x(x+12) equation:


Simplifying
8x(x + 2) + 20 = 5x(x + 12)

Reorder the terms:
8x(2 + x) + 20 = 5x(x + 12)
(2 * 8x + x * 8x) + 20 = 5x(x + 12)
(16x + 8x2) + 20 = 5x(x + 12)

Reorder the terms:
20 + 16x + 8x2 = 5x(x + 12)

Reorder the terms:
20 + 16x + 8x2 = 5x(12 + x)
20 + 16x + 8x2 = (12 * 5x + x * 5x)
20 + 16x + 8x2 = (60x + 5x2)

Solving
20 + 16x + 8x2 = 60x + 5x2

Solving for variable 'x'.

Reorder the terms:
20 + 16x + -60x + 8x2 + -5x2 = 60x + 5x2 + -60x + -5x2

Combine like terms: 16x + -60x = -44x
20 + -44x + 8x2 + -5x2 = 60x + 5x2 + -60x + -5x2

Combine like terms: 8x2 + -5x2 = 3x2
20 + -44x + 3x2 = 60x + 5x2 + -60x + -5x2

Reorder the terms:
20 + -44x + 3x2 = 60x + -60x + 5x2 + -5x2

Combine like terms: 60x + -60x = 0
20 + -44x + 3x2 = 0 + 5x2 + -5x2
20 + -44x + 3x2 = 5x2 + -5x2

Combine like terms: 5x2 + -5x2 = 0
20 + -44x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
6.666666667 + -14.66666667x + x2 = 0

Move the constant term to the right:

Add '-6.666666667' to each side of the equation.
6.666666667 + -14.66666667x + -6.666666667 + x2 = 0 + -6.666666667

Reorder the terms:
6.666666667 + -6.666666667 + -14.66666667x + x2 = 0 + -6.666666667

Combine like terms: 6.666666667 + -6.666666667 = 0.000000000
0.000000000 + -14.66666667x + x2 = 0 + -6.666666667
-14.66666667x + x2 = 0 + -6.666666667

Combine like terms: 0 + -6.666666667 = -6.666666667
-14.66666667x + x2 = -6.666666667

The x term is -14.66666667x.  Take half its coefficient (-7.333333335).
Square it (53.77777780) and add it to both sides.

Add '53.77777780' to each side of the equation.
-14.66666667x + 53.77777780 + x2 = -6.666666667 + 53.77777780

Reorder the terms:
53.77777780 + -14.66666667x + x2 = -6.666666667 + 53.77777780

Combine like terms: -6.666666667 + 53.77777780 = 47.111111133
53.77777780 + -14.66666667x + x2 = 47.111111133

Factor a perfect square on the left side:
(x + -7.333333335)(x + -7.333333335) = 47.111111133

Calculate the square root of the right side: 6.863753429

Break this problem into two subproblems by setting 
(x + -7.333333335) equal to 6.863753429 and -6.863753429.

Subproblem 1

x + -7.333333335 = 6.863753429 Simplifying x + -7.333333335 = 6.863753429 Reorder the terms: -7.333333335 + x = 6.863753429 Solving -7.333333335 + x = 6.863753429 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '7.333333335' to each side of the equation. -7.333333335 + 7.333333335 + x = 6.863753429 + 7.333333335 Combine like terms: -7.333333335 + 7.333333335 = 0.000000000 0.000000000 + x = 6.863753429 + 7.333333335 x = 6.863753429 + 7.333333335 Combine like terms: 6.863753429 + 7.333333335 = 14.197086764 x = 14.197086764 Simplifying x = 14.197086764

Subproblem 2

x + -7.333333335 = -6.863753429 Simplifying x + -7.333333335 = -6.863753429 Reorder the terms: -7.333333335 + x = -6.863753429 Solving -7.333333335 + x = -6.863753429 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '7.333333335' to each side of the equation. -7.333333335 + 7.333333335 + x = -6.863753429 + 7.333333335 Combine like terms: -7.333333335 + 7.333333335 = 0.000000000 0.000000000 + x = -6.863753429 + 7.333333335 x = -6.863753429 + 7.333333335 Combine like terms: -6.863753429 + 7.333333335 = 0.469579906 x = 0.469579906 Simplifying x = 0.469579906

Solution

The solution to the problem is based on the solutions from the subproblems. x = {14.197086764, 0.469579906}

See similar equations:

| 54=73 | | 12-10x=38+17x | | 2a+10a-5=0 | | -8x^2+130x-136=0 | | x-(-9.9)=5.1 | | 4y-2x=24 | | y+4x=36 | | (3x+2)(2x+3)=180 | | 3x+2(2x+3)=180 | | n^3=7209 | | n^3=2709 | | n*n*n=4913 | | X+3x-1=11 | | 6x-x=25 | | 7x-3x=32 | | y=-5-5 | | 3x^2-16+5= | | y-2+6=0 | | -x^2+169=0 | | x-9.1=6.1 | | 1+5=7 | | 7x+21x^2=0 | | 3x^2+9x^3=0 | | 9x^2-34+21=0 | | 2x-8=0.7x-4 | | x^3+5x^2+9x+45= | | x^2+17+72=0 | | 23x-5y=-29 | | 2v^2-19v+46=v^2-8v+16 | | 4x^3(-5)-2(x-5)= | | g(x)=8-3x | | gx=8-3x |

Equations solver categories