If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 8x(x + 2) + 20 = 5x(x + 12) Reorder the terms: 8x(2 + x) + 20 = 5x(x + 12) (2 * 8x + x * 8x) + 20 = 5x(x + 12) (16x + 8x2) + 20 = 5x(x + 12) Reorder the terms: 20 + 16x + 8x2 = 5x(x + 12) Reorder the terms: 20 + 16x + 8x2 = 5x(12 + x) 20 + 16x + 8x2 = (12 * 5x + x * 5x) 20 + 16x + 8x2 = (60x + 5x2) Solving 20 + 16x + 8x2 = 60x + 5x2 Solving for variable 'x'. Reorder the terms: 20 + 16x + -60x + 8x2 + -5x2 = 60x + 5x2 + -60x + -5x2 Combine like terms: 16x + -60x = -44x 20 + -44x + 8x2 + -5x2 = 60x + 5x2 + -60x + -5x2 Combine like terms: 8x2 + -5x2 = 3x2 20 + -44x + 3x2 = 60x + 5x2 + -60x + -5x2 Reorder the terms: 20 + -44x + 3x2 = 60x + -60x + 5x2 + -5x2 Combine like terms: 60x + -60x = 0 20 + -44x + 3x2 = 0 + 5x2 + -5x2 20 + -44x + 3x2 = 5x2 + -5x2 Combine like terms: 5x2 + -5x2 = 0 20 + -44x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 6.666666667 + -14.66666667x + x2 = 0 Move the constant term to the right: Add '-6.666666667' to each side of the equation. 6.666666667 + -14.66666667x + -6.666666667 + x2 = 0 + -6.666666667 Reorder the terms: 6.666666667 + -6.666666667 + -14.66666667x + x2 = 0 + -6.666666667 Combine like terms: 6.666666667 + -6.666666667 = 0.000000000 0.000000000 + -14.66666667x + x2 = 0 + -6.666666667 -14.66666667x + x2 = 0 + -6.666666667 Combine like terms: 0 + -6.666666667 = -6.666666667 -14.66666667x + x2 = -6.666666667 The x term is -14.66666667x. Take half its coefficient (-7.333333335). Square it (53.77777780) and add it to both sides. Add '53.77777780' to each side of the equation. -14.66666667x + 53.77777780 + x2 = -6.666666667 + 53.77777780 Reorder the terms: 53.77777780 + -14.66666667x + x2 = -6.666666667 + 53.77777780 Combine like terms: -6.666666667 + 53.77777780 = 47.111111133 53.77777780 + -14.66666667x + x2 = 47.111111133 Factor a perfect square on the left side: (x + -7.333333335)(x + -7.333333335) = 47.111111133 Calculate the square root of the right side: 6.863753429 Break this problem into two subproblems by setting (x + -7.333333335) equal to 6.863753429 and -6.863753429.Subproblem 1
x + -7.333333335 = 6.863753429 Simplifying x + -7.333333335 = 6.863753429 Reorder the terms: -7.333333335 + x = 6.863753429 Solving -7.333333335 + x = 6.863753429 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '7.333333335' to each side of the equation. -7.333333335 + 7.333333335 + x = 6.863753429 + 7.333333335 Combine like terms: -7.333333335 + 7.333333335 = 0.000000000 0.000000000 + x = 6.863753429 + 7.333333335 x = 6.863753429 + 7.333333335 Combine like terms: 6.863753429 + 7.333333335 = 14.197086764 x = 14.197086764 Simplifying x = 14.197086764Subproblem 2
x + -7.333333335 = -6.863753429 Simplifying x + -7.333333335 = -6.863753429 Reorder the terms: -7.333333335 + x = -6.863753429 Solving -7.333333335 + x = -6.863753429 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '7.333333335' to each side of the equation. -7.333333335 + 7.333333335 + x = -6.863753429 + 7.333333335 Combine like terms: -7.333333335 + 7.333333335 = 0.000000000 0.000000000 + x = -6.863753429 + 7.333333335 x = -6.863753429 + 7.333333335 Combine like terms: -6.863753429 + 7.333333335 = 0.469579906 x = 0.469579906 Simplifying x = 0.469579906Solution
The solution to the problem is based on the solutions from the subproblems. x = {14.197086764, 0.469579906}
| 54=73 | | 12-10x=38+17x | | 2a+10a-5=0 | | -8x^2+130x-136=0 | | x-(-9.9)=5.1 | | 4y-2x=24 | | y+4x=36 | | (3x+2)(2x+3)=180 | | 3x+2(2x+3)=180 | | n^3=7209 | | n^3=2709 | | n*n*n=4913 | | X+3x-1=11 | | 6x-x=25 | | 7x-3x=32 | | y=-5-5 | | 3x^2-16+5= | | y-2+6=0 | | -x^2+169=0 | | x-9.1=6.1 | | 1+5=7 | | 7x+21x^2=0 | | 3x^2+9x^3=0 | | 9x^2-34+21=0 | | 2x-8=0.7x-4 | | x^3+5x^2+9x+45= | | x^2+17+72=0 | | 23x-5y=-29 | | 2v^2-19v+46=v^2-8v+16 | | 4x^3(-5)-2(x-5)= | | g(x)=8-3x | | gx=8-3x |