8x(x+2)-8=2x(2+x)+9

Simple and best practice solution for 8x(x+2)-8=2x(2+x)+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x(x+2)-8=2x(2+x)+9 equation:



8x(x+2)-8=2x(2+x)+9
We move all terms to the left:
8x(x+2)-8-(2x(2+x)+9)=0
We add all the numbers together, and all the variables
8x(x+2)-(2x(x+2)+9)-8=0
We multiply parentheses
8x^2+16x-(2x(x+2)+9)-8=0
We calculate terms in parentheses: -(2x(x+2)+9), so:
2x(x+2)+9
We multiply parentheses
2x^2+4x+9
Back to the equation:
-(2x^2+4x+9)
We get rid of parentheses
8x^2-2x^2+16x-4x-9-8=0
We add all the numbers together, and all the variables
6x^2+12x-17=0
a = 6; b = 12; c = -17;
Δ = b2-4ac
Δ = 122-4·6·(-17)
Δ = 552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{552}=\sqrt{4*138}=\sqrt{4}*\sqrt{138}=2\sqrt{138}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{138}}{2*6}=\frac{-12-2\sqrt{138}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{138}}{2*6}=\frac{-12+2\sqrt{138}}{12} $

See similar equations:

| 3x+9=4x-36 | | 4/5x=6-1/5 | | 10x−2=2x+2 | | 3(2x+5)+7x+2)=56 | | u2+10u=–9 | | u^2+10u=–9 | | 0.143f-5.5=0.643 | | 6/22=39/x | | 6/12=39/x | | 14-7x=-22 | | 4x-2=14x-70 | | -28-6x=8 | | 8x=6x=x+2 | | 7x-12=5x+50 | | 3x+4x=230 | | 2(x-2)+8=2x=4 | | 10e+6=4e-18 | | 4-3a=19 | | 4n+40=80 | | 1/8+x+2/8=1 | | {x/2x+A3=11-2x} | | 12-x=-12-5x | | 5•z=35. | | 2a^2+100=-30a | | k²+86=86 | | 33-3n=105 | | 12-x=-12-5 | | –13n−–4n−–9n−7n−11n=–18 | | 3(x-2)=2(10+2) | | 5.25s-20.1=8.94 | | 13x=x-20 | | 2m-2m+3m=15 |

Equations solver categories